Скукина Елена Владимировна,

научный сотрудник, Биологический факультет, ФГБОУ ВО «Московский государственный университет им. Ломоносова», г. Москва, Россия

ИЗУЧЕНИЕ ВЛИЯНИЯ АНТРОПОГЕННЫХ ФАКТОРОВ НА СОСТАВ ПАЛИНОМА ЦЕНТРАЛЬНЫХ РЕГИОНОВ ЕВРОПЕЙСКОЙ ЧАСТИ РОССИИ

Анномация. В результате хозяйственной деятельности человека произошли существенные изменения в спорово-пыльцевых спектрах центральных регионов Европейской части России. Вырубки, вымирание коренных дубовых лесов и искусственные – преимущественно сосновые – насаждения, а также зарастание залежей вторичными березняками влияют на количественный состав спорово-пыльцевых спектров. Разведение экзотических пород в парках и на приусадебных участках, а также распространение карантинных сорняков приводит к изменениям качественного состава спектров.

Ключевые слова: пыльца, флора, лесная растительность, индродуценты, карантинные сорняки.

Elena V. Skukina,

research scientist,

Department of Biology,

Lomonosov Moscow State University,

Moscow, Russia

STUDYING THE INFLUENCE OF ANTHROPOGENOUS FACTORS ON GREEN COVER OF EUROPEAN RUSSIA CENTRAL REGIONS

Abstract. Human economic activities result in significant changes of sporo-pollen spectra of European Russia central regions. Deforestation, dieback of oak-forests, homogeneous forests (mostly pinaceous), secondary birch forests arising on the site of abandoned fields influence on quantitative composition of sporo-pollen spectra. Farming exotic broods in parks and backyards, quarantine weeds expansion lead to changes of quantitative composition of spectra.

Keywords: pollen, wildflower, forest vegetation, introducents, quarantine weeds.

Растительный покров Европейской части России за период хозяйственной деятельности человека претерпел значительные изменения. С одной стороны, это связано с вырубками, как под пашни, так и с целью заготовки древесины. Васильева Т.В. отмечает, что древесные насаждения подвергаются вырубке не в равной мере: прежде всего уязвимыми оказываются высококачественные хвойные леса (сосняки и ельники повышенной производительности) [2].

В то же время, Слинчак А.И. отмечает уязвимость широколиственного компонента растительной зоны смешанных лесов. Во-первых, наиболее благоприятные исконные местообитания широколиственных пород (дуба, липы, вяза, ясеня и др.) сейчас вовлечены в хозяйственный оборот, бывшие некогда под ними почвы, как правило, распаханы. Во-вторых, возобновление широколиственных пород часто затруднено вследствие обеднения почв или неблагоприятных для них микроклиматических условий. Даже при отсутствии распашки здесь быстрее вырастают осинники, березняки, которых со временем вытесняют ельники. В-третьих, возобновление указанных пород часто отсутствует из-за сенокошения и выпаса скота, что ведёт к уничтожению подроста [9].

Существенным фактором послужило и массовое усыхание дубрав во всей центральной части России. Этот процесс начался ещё в 1968-69 гг. и неоднократно усугублялся в последующие годы часто повторяющимися засухами и морозными зимами, которые приводили к ослаблению дубрав и, как следствие, к вспышкам массового размножения в них листогрызущих вредителей. Проводимые в лесхозах санитарные рубки по уборке сухостоя в дубовых насаждениях еще больше истощили дубняки и привели к их изреживанию. Часть дубняков полностью погибла и была вырублена сплошными санитарными рубками [4].

Многие авторы отмечают, что среднерусские дубовые леса в настоящее время являются редким типом растительности и существуют в виде небольших

изолированных фрагментов на фоне сельскохозяйственных земель на Русской равнине [3, 5].

Другой вектор антропогенных изменений — инвазивные виды. В течение последних десятилетий сотни видов растений расширили ареалы своего обитания благодаря деятельности человека. По способу заноса выделяют преднамеренно (интродуценты) и непреднамеренно занесенные растения (индуценты, ксенофиты).

Из числа культурных растений-интродуцентов существенно продвинулись на север такие традиционно южные культуры, как ореховые. В Тверской области отмечены (2000, 2009 гг.) орехи серый, чёрный и маньчжурский [7, 8]. Орех грецкий изредка высаживается местными жителями во дворах Калуги и других населённых пунктов [6], а в Белгородской области отмечен даже дичающим [12].

Из числа травянистых растений-индуцентов с 1978 г. в Тверской области, а с 2006 г. – в Псковской, – отмечаются единичные экземпляры сорного карантинного растения амброзии [10, 11, 7]. Амброзия – заносной карантинный сорняк. Естественным ареалом произрастания амброзии является Северная Америка. С 1960-1970-х годов с Крыма началось её распространение на территории СССР [1].

Целью настоящей работы является изучение влияния различных антропогенных факторов на состав палинома. Для изучения споровопыльцевых спектров были выбраны зона смешанных широколиственнохвойных подтаёжных лесов и зона дубовых лесов.

На картах отражены пункты сбора поверхностных проб пыльцы относительно административных границ и относительно растительных зон (рис 1 и 2).

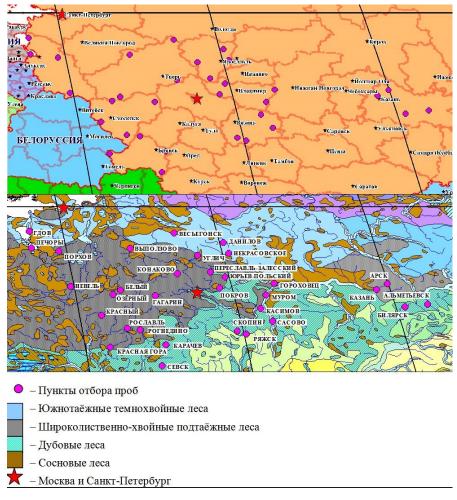


Рисунок 1 — Пункты отбора проб зоны широколиственно-хвойных подтаёжных лесов на административной карте и на карте растительных зон

Зона смешанных широколиственно-хвойных подтаёжных лесов

Для анализа все пункты отбора проб были нанесены на шкалу в зависимости от географической широты и удалённости от границ растительных зон. В левую часть шкалы диаграммы попали самые северные населённые пункты, расположенные в зоне южнотаёжных темнохвойных лесов (голубой фон). Центральная часть спектра представлена пунктами, лежащими в центральной части зоны смешанных лесов (серый фон). Справа располагаются населённые пункты, расположенные в растительной зоне дубовых лесов (зелёный фон). Серо-голубым и серо-зелёным цветом маркированы пункты, находящиеся на границах растительных зон. Расположив таким образом на шкалу абсцисс населённые пункты, по оси ординат откладывали содержание пыльцы тех или иных таксонов в пробах в процентах.

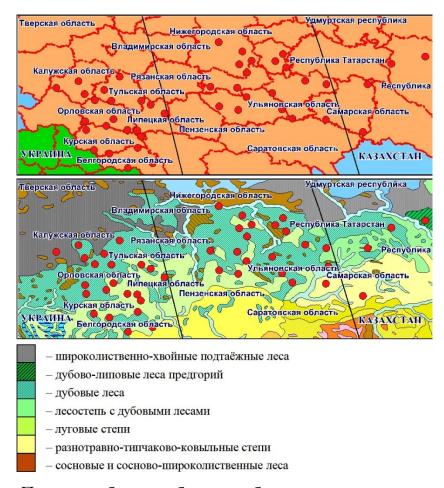


Рисунок 2 – Пункты отбора проб зоны дубовых лесов на административной карте и на карте растительных зон

При анализе суммарной доли пыльцевых зёрен всех древесных и всех травянистых растений в палиномах было выявлено, что строгой зависимости от растительной зоны не наблюдается (см. рис. 3).

Наименьшая доля пыльцевых зёрен древесных растений отмечается преимущественно в зоне широколиственно-хвойных подтаёжных лесов (центральная часть диаграммы, окрашенная серым фоном). Объясняется это антропогенным фактором — наибольшей заселённостью этого региона и активным сведением лесов на данной территории. Так, наибольшая доля пыльцевых зёрен древесных растений отмечается в палиномах тех областей, которые наиболее удалены от Московской. Это Псковская область (Гдов, Печоры, Невель — от 77 до 91% пыльцевых зёрен древесных растений), Брянская область (Красная Гора, Рогнедино, Карачев, Севск — от 95 до 99%) и

Республика Татарстан (Казань, Билярск и Альметьевск - от 63 до 83%

пыльцевых зёрен древесных растений).

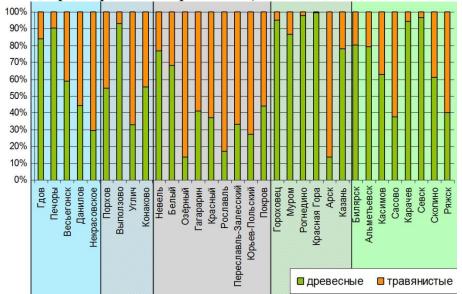


Рисунок 3 — Соотношение числа пыльцевых зёрен травянистых и древесных растений в составе палиномов исследованной территории

Для анализа взаимного соотношения пыльцевых зёрен хвойных, широколиственных, мелколиственных пород в составах спектров за 100% принимали суммарное количество пыльцевых зёрен всех древесных растений (за вычетом травянистых).

Соотношение пыльцы хвойных, мелколиственных и широколиственных пород отражено на диаграмме (рис. 4).

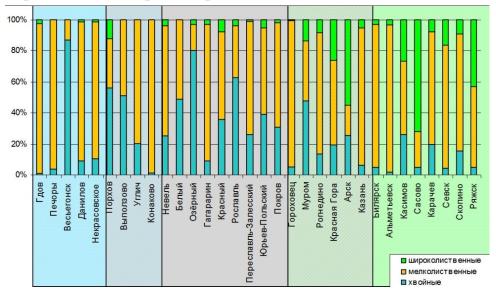


Рисунок 4 — Соотношение пыльцы хвойных, мелколиственных и широколиственных пород в составе палиномов исследованной территории

Из диаграммы видно, что состав палинома имеет определённую зависимость от растительной зоны, в которой он был сформирован.

Вместе с тем, отдельные палиномы из всех древесных растений содержат преимущественно пыльцу берёзы и крайне мало пыльцы как хвойных, так и широколиственных деревьев. Такие спектры мы наблюдаем в отдельных пробах всех растительных зон (Гдов, Печора, Конаково, Казань, Билярск, Альметьевск). Это обусловлено вырубкой основных лесообразующих пород и замещением оголённых территорий берёзой (*Betula spp.*), которая отличается неприхотливостью и высокой скоростью роста.

Пыльца граба (*Carpinus betulus*), как показали наши исследования, встречается значительно восточнее границы его ареала (рис. 5). Связано ли это с дальним заносом, или с интродукцией граба, можно определить только в ходе дополнительных исследований.

Рисунок 5 — Карта встречаемости пыльцы граба в палиномах исследованной территории

Орехи, как правило, приурочены к растительности южных регионов, но могут встречаться также в умеренных широтах в составе парковых насаждений и в ботанических садах, особенно, орех серый, который отличается высокой зимостойкостью (рис. 6).

Рисунок 6 – Карта встречаемости в палиномах исследованной территории пыльцы ореха грецкого и ореха серого

Карантинный сорняк амброзия, как подтверждают наши исследования, за последнее время распространилась не только в зоне дубовых, но и во всей зоне смешанных лесов (рис. 7).

Зона дубовых лесов

Для анализа спектров зоны дубовых лесов все пункты отбора проб были нанесены на шкалу слева направо в соответствии с их расположением на карте с запада на восток. Такое расположение оправдано незначительной протяжённостью зоны дубовых лесов с севера на юг, и весьма значительной её протяжённостью с запада на восток. Такого рода дифференциация позволяет

учесть климатический фактор, а именно – аридизацию климата в направлении с запада на восток.

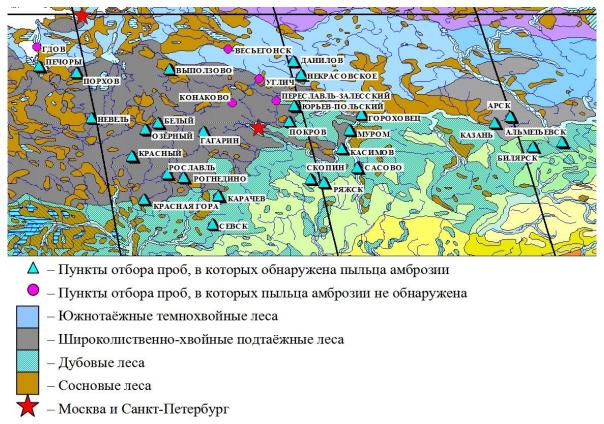


Рисунок 7 – Карта встречаемости пыльцы амброзии в палиномах исследованной территории

Таким образом, в левую часть диаграммы попали самые западные точки отбора проб, собранные в Калужской, Тульской, Орловской, Курской, Липецкой и Белгородской областей. Географически эти регионы располагаются в пределах Среднерусской возвышенности.

В среднюю часть диаграммы попали регионы, расположенные на Приволжской возвышенности: Нижегородская, Пензенская и Ульяновская области, а также республики Чувашия и Мордовия.

Правую часть диаграммы занимают населённые пункты Республики Башкортостан, расположенные в пределах Бугульминско-Белебеевской возвышенности.

На полученной диаграмме по вертикальной оси откладывали соотношение пыльцевых зёрен различных таксонов в процентных долях либо относительно общего количества пыльцы, либо относительно друг друга.

Для анализа взаимного соотношения пыльцевых зёрен хвойных, широколиственных, мелколиственных пород в составах спектров за 100% принимали суммарное количество пыльцевых зёрен всех древесных растений (за вычетом травянистых).

Соотношение пыльцы хвойных, мелколиственных и широколиственных пород отражено на диаграмме (рис. 8). Из диаграммы видно, максимальная доля пыльцевых зёрен древесных растений принадлежит мелколиственным породам (берёза). В значительной степени это связано с высокой пыльцевой продуктивностью берёзы. Вместе с тем, березняки занимают действительно значительные площади на исследуемой территории: с одной стороны это земли, выведенные из сельскохозяйственного оборота, с другой — участки широколиственных лесов, подвергшиеся санитарным и иным рубкам.

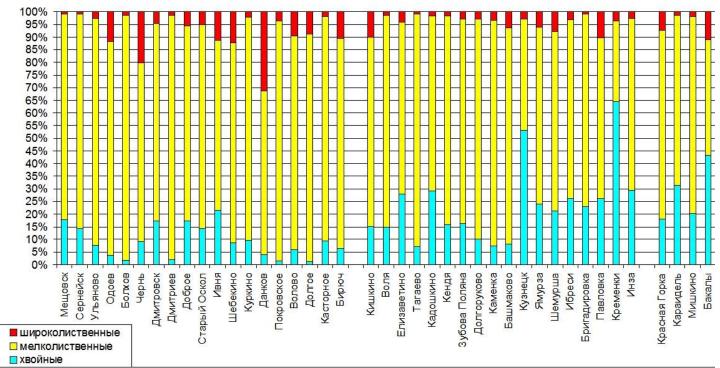


Рисунок 8 – Соотношение количества пыльцевых зёрен хвойных, широколиственных и мелколиственных пород деревьев в составах спектров зоны дубовых лесов

Как видно из диаграммы, доля пыльцы широколиственных пород деревьев (дуб, липа, вяз, граб) относительно высоких значений достигают только в спектрах Среднерусской возвышенности (левая часть диаграммы), в то время как в более континентальных районах эта доля незначительна.

Связано более засушливый это, по-видимому, тем, что И характеризующийся перепадом температур значительным климат неблагоприятен для деревьев широколиственных пород, в связи с чем в восточных районах растительной зоны дубовые леса претерпевают более значительную деградацию.

Одним из маркеров степных и лесостепных растительных зон всегда служили пыльцевые зёрна хвойника (род Ephedra). Как показали наши исследования, единичные пыльцевые зёрна хвойника встречаются в палиномах северо-западнее зоны лесостепей и границы своего ареала (см. рис. 9), а именно в Орловской, Тульской и Калужской областях, а также в Республике Мордовия и Чувашской Республике.

Рисунок 9 – Карта встречаемости в палиномах пыльцы хвойника

в палиномах зоны дубовых лесов

Это может свидетельствовать о проникновении отдельных экземпляров хвойника за пределы его ареала в связи с аридизацией климата и деградацией широколиственных лесов.

Бук (*Fagus sp.*) — древесное растение, произрастающее в тёплых и влажных климатических условиях. В Европе ареал бука лесного (*Fagus sylvatica*) охватывает всю Центральную и Западную Европу, а также Кавказ и Крым. Восточная граница ареала бука проходит по территориям Калининградской области, Польши, Украины и Молдовы. Сведений о целенаправленном использовании бука в озеленении городов или на приусадебных участках указанной растительной зоны не обнаружено.

Однако, как показывают исследования, единичные пыльцевые зёрна бука встречаются в спорово-пыльцевых спектрах значительно восточнее естественного ареала этого рода (см. рис. 10). Вопрос о причинах попадания пыльцы бука в палиномы должен уточняться в рамках дополнительных исследований.

Таким образом, влияние антропогенных факторов на состав палинома весьма значительно. Изменение площади и состава лесов меняют количественную составляющую спорово-пыльцевых спектров, а индукция и интродукция чужеродной флоры меняет качественный состав палинома.

ССЫЛКИ НА ИСТОЧНИКИ

- 1. http://ru.m.wikipedia.org/wiki/Амброзия (растение)
- 2. Васильева Т.В. Геоэкологическая оценка состояния и динамики лесного фонда Псковской области // Псковский регионологический журнал. 2008. —№6. С. 86-94.
- 3. Восточноевропейские широколиственные леса / Π од ред. Смирнова О.В. M.: Наука, 1994. 362 с.
- 4. Кудрявцев А.Ю. Леса Пензенской области // Известия ПГПУ. Естественные науки. -2007. -№ 5 (9). C. 17-23.
- 5. Растительность европейской части СССР / Под ред. Грибовой С.А., Исаченко Т.И., Лавренко Е.М. – Л.: Наука, 1980. – 429 с.

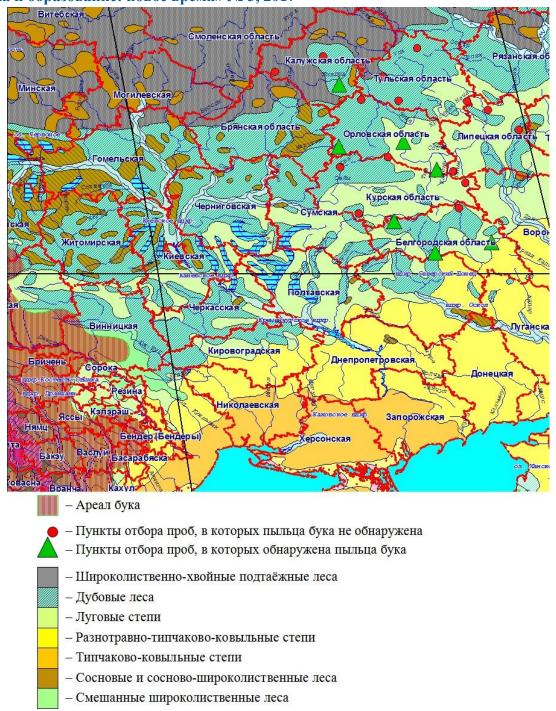


Рисунок 10 – Карта встречаемости пыльцы бука в палиномах зоны дубовых лесов

- 7. Нотов А.А. Адвентивный компонент флоры Тверской области. Динамика состава и структуры. Тверь: Тверской государственный университет, 2009. 472 с.
- 8. Нотов А.А. Материалы к флоре Тверской области. Тверь: Тверской государственный университет, 2000. —121 с.
- 9. Слинчак А.И. Геофизический анализ антропогенных изменений природной среды северозапада русской равнины // Псковский регионологический журнал. 2006. N_2 3. С. 67-72.

- 10. Соколова И.Г. Адвентивная флора г. Пскова // Псковский регионологический журнал. 2006. № 2. C. 126-131.
- 11. Соколова И.Г. Инвазивные виды Псковской области // Псковский регионологический журнал. 2012. –№ 14. –С. 97-102.
- 12. Фомина О.В., Тохтарь В.К. Структура флоры городской агломерации Белгорода // Научные ведомости. Серия Естественные науки. 2010. № 21 (92). Вып. 13. С. 28-32.