Иванычев Дмитрий Алексеевич,

канд. физ.-мат. наук, доцент,

ФГБОУ ВО «Липецкий государственный технический университет»,

г. Липецк, Россия

ЗАДАЧА О РАВНОВЕСИИ ПРИЗМАТИЧЕСКОГО ТЕЛА СО СЛАБО ВЫРАЖЕННОЙ АНИЗОТРОПИЕЙ

Предлагается приближённый метод решения пространственной статической задачи теории упругости для однородного трансверсально-изотропного тела со слабо выраженной анизотропией. Решена первая задача механики для призматического тела из меди. Полученное решение является аналитическим и параметрическим, где в качестве параметров выступают параметры транстропной среды.

Ключевые слова: метод малого параметра, метод граничных состояний, пространственная задача статики, приближенные решения, параметрические решения, анизотропия.

Dmitry A. Ivanychev,

Candidate of Physical and Mathematical Sciences, Associate Professor,

Lipetsk State Technical University,

Lipetsk, Russia

THE PROBLEM OF THE EQUILIBRIUM OF A PRISMATIC BODY WITH A WEAKLY EXPRESSED ANISOTROPY

An approximate method is proposed for solving the static static problem of the theory of elasticity for a homogeneous transversely isotropic body with a weakly expressed anisotropy. The first problem of mechanics for a prismatic body of copper is solved. The solution obtained is analytic and parametric, where parameters of the trans-strop medium are used as parameters.

Keywords: small parameter method, boundary state method, spatial static problem, approximate solutions, parametric solutions, anisotropy.

Рассматривается упругое равновесие однородного анизотропного тела под действием внешних поверхностных усилий X_n , Y_n и Z_n . Материал тела слабо анизотропен и транверсально-изотропен (ось анизотропии совпадает с продольной осью стержня z). Задача состоит в определении механических

«Наука и образование: новое время» № 1, 2018

характеристик как функций, в которых технические константы участвуют в явном виде.

Для решения задачи применяется метод малого параметра, основанный на представлении искомых функций в виде ряда, расположенного по степеням некоторых малых параметров, что позволяет свести решение задачи для анизотропной среды к решению ряда плоских задач для изотропной среды.

Обобщенный закону Гука для транстропной среды [4] представляется в следующем виде:

$$\sigma_{xx} = A\varepsilon_{xx} - B\varepsilon_{yy} - C\varepsilon_{zz}; \quad \tau_{yz} = E\varepsilon_{yz};$$

$$\sigma_{yy} = -B\varepsilon_{xx} + A\varepsilon_{yy} - C\varepsilon_{zz}; \quad \tau_{xz} = E\varepsilon_{xz};$$

$$\sigma_{zz} = D\varepsilon_{zz} - C(\varepsilon_{xx} + \varepsilon_{yy}); \quad \tau_{xy} = F\varepsilon_{xy},$$
(1)

где A, B, C, D, E, F — константы, зависящие от упругих свойств материала.

$$A = a(1+\alpha); B = b(1+\beta); C = b(1+\gamma); D = c(1+\delta);$$

$$E = d(1+\varepsilon); F = (a+b+a\alpha+b\beta),$$
(2)

где α , β , γ , δ , ε — малые параметры, характеризующие отклонение слабо анизотропной среды от некоторой изотропной среды.

Далее асимптотические ряды (3) подставляются в соотношения (1) и выделяется изотропная составляющая на каждом приближении.

$$\sigma_{ij} = \sum_{mn\,k\,lf} \alpha^m \beta^n \gamma^k \delta^l \varepsilon^f \sigma_{ij}^{mn\,k\,lf}; \quad \varepsilon_{ij} = \sum_{mn\,k\,lf} \alpha^m \beta^n \gamma^k \delta^l \varepsilon^f \varepsilon_{ij}^{mn\,k\,lf};$$

$$u_i = \sum_{mn\,k\,lf} \alpha^m \beta^n \gamma^k \delta^l \varepsilon^f u_i^{mn\,k\,lf}.$$
(3)

Организовывается перебор m, n, k таким образом, чтобы кроме полей характеристик на определённом приближении в уравнениях участвовали поля, ранее уже полученные. Решение плоской изотропной задачи на каждом приближении проводится методом граничных состояний [5].

Рассматривается первая основная задача для стержня прямоугольной формы [2] $\{(-1 \le x \le 1), (-1 \le y \le 1), (-1 \le z \le 1)\}$ из меди [1] $E_{xy} = 1,25 \cdot 10^5$ МПа; $E_z = 1,42 \cdot 10^5$ МПа, $G_z = 0,46 \cdot 10^5$ МПа; $V_{xy} = 0,25$, $V_z = 0,34$.

«Наука и образование: новое время» № 1, 2018

На боковой поверхности заданы усилия:

$$\begin{cases} p \in (0, 0, 1), x = -1; & p \in (0, 0, 0), y = -1; & p \in (0, 0, -1), x = 1; \\ p \in (0, 0, 1), y = 1; & p \in (1, 0, -x^2 - y^2), z = -1; & p \in (-1, 0, x^2 + y^2), z = 1. \end{cases}$$

Массовые силы отсутствуют.

На каждом шаге итерации рассматривается изотропная среда с приведёнными безразмерными модулем Юнга на растяжение E=70.75 и коэффициентом Пуассона v=0.24 (следовательно, $\mu=28.53$, $\lambda=18.018$), которым соответствуют малые параметры $\alpha=0.108$, $\beta=-0.142$, $\delta=0.0165$.

Полученные результаты решения во втором приближении слишком громоздки, поэтому приведём лишь структуру компонента вектора перемещения (высшие степени и произведения малых параметров отброшены):

$$\begin{split} u \approx & [-4x - 126x^3 + \dots - 78xy^2 + \dots - 139xy^2z^2 + \dots - 377xy^2\alpha^2\beta + \dots - 349x^3y^2\alpha\beta^2 + \dots + 88x^3y^2z^2\beta^2\gamma + \dots + 207x^3y^2z^2\gamma\delta^2 + \dots + 356xz^2\delta^3 + \dots + 591x\delta\varepsilon^2 + \dots] \cdot 10^{-3}; \\ v \approx & [-4y - 78x^2y + \dots - 126y^3 + \dots - 78xy^2 + \dots - 139x^2yz^2 + \dots - 177y\alpha^2\beta + \dots \\ & - 753y\gamma + \dots - 353yz^2\gamma + \dots + 61x^2y^3\gamma^2\delta + \dots + 159x^2y^3\gamma^2\varepsilon + \dots] \cdot 10^{-3}; \\ w \approx & [-2204x + 199z + 664x^2z + \dots 664y^2z + \dots - 201x^2z\alpha^2\beta + \dots 46x^2y^2z\beta\gamma^2 + \dots \\ & + 2677x\varepsilon + \dots + 555y^2z^3\delta^2\varepsilon + \dots - 2890z\delta\varepsilon^2 + \dots + 171x^2y^2z^3\varepsilon^3 + \dots] \cdot 10^{-3}. \end{split}$$

Таким образом, механические характеристики есть функции координат и малых параметров. Изменяя последние в определенных пределах, мы имеем возможность получать механические поля для различного (близкого по свойствам к меди) материала, не проводя каждый раз заново решение анизотропной задачи, что порой при сложных граничных условиях и геометрии тела, составляет непростую задачу.

Верификацию полученного результата можно осуществить путем сопоставления полученного результата с решением, полученным традиционным способом [3]. Полученные полнопараметрические выражения снимают необходимость заново решать задачи при малом изменении упругих констант материала.

СПИСОК ЛИТЕРАТУРЫ

1. Золоторевский В.С. Механические свойства металлов. 2 изд. – М., 1983. – 352 с.

«Наука и образование: новое время» № 1, 2018

- 2. Иванычев Д.А., Пеньков В.Б. Полнопараметрическое решение пространственных задач теории слабо анизотропной упругости / Д.А. Иванычев, В.Б. Пеньков // Наука и бизнес: пути развития. 2017. N = 9 (75).
- 3. Иванычев Д.А. Метод граничных состояний в приложении к осесимметричным задачам для анизотропных тел / Д.А. Иванычев // Вести высших учебных заведений Черноземья. Научно-технический и производственный журнал. Липецк, ЛГТУ. 2014. №1.
- 4. Лехницкий С.Г. Анизотропные пластинки. М.: ГИТТЛ, 1957. 463 с.
- 5. Пеньков В.Б., Пеньков В.В. Метод граничных состояний для решения задач линейной механики // Дальневосточный математический журнал. 2001. Т.2. №2.