Хасанов Станислав Вильевич,

канд. физ.-мат. наук, доцент кафедры математики, ФГБОУ ВО «Уфимского государственный авиационный технический университет», г. Уфа, Республика Башкортостан, Россия

ПОВЕДЕНИЕ ГОЛОМОРФНЫХ ФУНКЦИЙ НА ГРАНИЦЕ ОБЛАСТИ В C^{n}

В 1974 г. было доказано [1], что любое биголоморфное отображение ограниченных строго псевдовыпуклых областей в C^{n} гладко продолжается до СК-диффеоморфизма их границ. Таким образом, классификация ограниченных областей (с точностью до биголоморфизмов) сводится к классификации границ этих областей с точностью до СR-диффеоморфизмов. Одновременно с этим результатом, С.И. Пинчук доказал в [2] теорему о локальном продолжении СКотображений вещественно-аналитических поверхностей, в которой использовал принцип отражения Шварца ДЛЯ аналитического продолжения отображений. В 1978 г. С.М. Вебстер установил в [3] общий результат, согласно которому CR отображения локально комплексно алгебраичны, если исходная поверхность и её образ алгебраичны. Эти результаты привели к возникновению области комплексного анализа, связанной с аналитической продолжимостью биголоморфных отображений.

С тех пор эти вопросы активно разрабатывались, и в результате, были получены некоторые существенные уточнения оригинальных утверждений.

В данной обзорной работе рассматривается подход, позволяющий свести изучение гладких СR-структур к аналитическим. Это так называемый метод растяжения, предложенный С.И. Пинчуком и развитый автором в [4], который можно рассматривать как пошаговое преобразование гладких структур в C^{n} в аналитические. Эта деформация рассматривается вместе с соответствующим диффеоморфизмом заданных гладких структур.

Метод растяжения позволяет свести задачу к аналитическому случаю, в котором существенную роль играет принцип отражения Вебстера.

Существенным его моментом являлось использование асимптотически голоморфных гладких функций f, для которых частные производные $\overline{\partial} f$ обращается в нуль с некоторым порядком вблизи вещественного многообразия. Вообще, асимптотическая голоморфность функции f – это малое значение (стремящееся к нулю) для $\overline{\partial} f$. Порядок убывания зависит от конкретной задачи.

Основой же метода растяжений являлась следующая оценка, также полученная автором. Пусть D — гладкая ограниченная строго псевдовыпуклая область в C^n и ρ ее определяющая функция. Пусть f голоморфная в D функция. Существует постоянная K > 0, такая что

$$\sum_{k=1}^{\infty} \frac{\partial \rho}{\partial \overline{z}_k}(z) \frac{\partial}{\partial z}(\rho(f(z))) \ge K$$

Оценка локальна, что не уменьшает общности теоремы о продолжении.

Заметим, что каждое голоморфное отображение строго псевдовыпуклых областей удовлетворяет этому условию.

Важным условием аналитического продолжения являлась необходимость вещественной аналитичности гиперповерхностей. Оказалось, что в случае гладкости границы области порядка п имеет место продолжение отображения на границу области с гладкостью $\mathbf{n} - 1/2 - \varepsilon$ для любого ε (то есть продолжение обладает гладкостью порядка \mathbf{n} -1 и все производные (\mathbf{n} -1) порядка удовлетворяет условию Лишица:

$$|F(x) - F(y)| \le |x - y|^{0.5 - \varepsilon}$$

Рассмотрим следующую задачу, которая, помимо ее самостоятельного интереса, имеет много важных приложений. Обозначим через $\Delta = \{\zeta \in \mathbb{C} : |\zeta| < 1\}$ единичный диск в \mathbb{C} . Пусть M — вполне вещественное подмногообразие в C^n и $f: \Delta \to C^n$ голоморфное отображение, которое назовем голоморфным диском в C^n . Предположим, что граничные значения f на открытой дуге γ единичной окружности $\partial \Delta$ принадлежат M.

Что можно сказать о регулярности f на Δ U γ ? Известна следующая Теорема. Пусть Ω — область в C^n , ρ — непрерывная плюрисубгармоническая функция на Ω , а $f:\Delta\to\Omega$ — голоморфное отображение, такое что $\rho\circ f=0$ на Δ . Пусть существуют предельные значения $\rho\circ f(re^{i\theta})d\theta$ (где $d\theta$ —мера Лебега) на единичной окружности $d\Delta$. Пусть для некоторой точки а на γ предельное множество содержит точку p, такую, что ρ строго плюрисубгармонична в окрестности точки p.

Тогда в $\Delta \cup \gamma$ функция f продолжается непрерывно в окрестность точки а в $\Delta \cup \gamma$. Это продолжение удовлетворяет условию Липшица с показателем 1/2.

Этот результат является естественным обобщением теорем о граничной регулярности конформных отображений, поскольку в случае n=1 подмногообразие M – это гладкая кривая на комплексной плоскости.

Кроме того, эта теорема используется при доказательстве теоремы о соответствии границ при биголоморфных отображениях для областей в C^n с гладкими границами класса C^m . Теорема о соответствии показывала гладкое продолжение функции в окрестность данных областей (с потерей гладкости в 0,5, которая не может быть улучшена) и была доказана автором в [4].

СПИСОК ЛИТЕРАТУРЫ

- 1. Fefferman Ch. The Bergman kernel and biholomorphic mappings of pseudoconvex domains // Invent. math. -1974.-26.-C. 1-65.
- 2. Пинчук С. Об аналитическом продолжении голоморфных отображений / Мат. сб. 1975. 27. С. 345-392.
- 3. Webster S. Some birational invariants for algebraic real hypersurfaces / Duke Math. J. 1978. 45. P. 39-46.
- 4. Хасанов С.В. Соответствие границ при биголоморфных отображениях в C^n // Сибирский математический журнал. 1988, т.19. N23. С. 156-162.