Шуваев Александр Васильевич,

канд. хим. наук, доцент,

ФГБОУ ВО «Сибирский государственный университет путей сообщения»,

г. Новосибирск, Россия

ОБРАЗОВАНИЕ HgClBr ИЗ ОДНОРОДНЫХ ДИГАЛОГЕНИДОВ РТУТИ (II) В ВОДНОМ РАСТВОРЕ

Спектрофотометрическим методом изучено равновесие процесса $HgCl_2 + HgBr_2 = 2HgClBr$ в водном растворе при ионной силе 10^{-3} ($HClO_4$) и $t = 20 \pm 1^{\circ}C$. Результаты измерений анализировались методами математической статистики; статистически значимых различий между результатами не было обнаружено. Получено значение константы равновесия $lgK = 0,687 \pm 0,061$, которое в пределах точности измерений совпадает с другими надежными литературными данными. Отмечено, что оптические характеристики хлориднобромидной системы ртути (II) оказались менее благоприятными для измерения константы равновесия по сравнению с другими галогенидно-псевдогалогенидными системами ртути (II).

Ключевые слова: диацидокомплексы ртути (II), константы равновесий копропорционирования, планирование эксперимента, спектрофотометрия, методы математической статистики.

Alexander V. Shuvaev,

PhD in Chemistry, docent,
Siberian State University of Railway Engineering,
Novosibirsk, Russia

FORMATION OF HgClBr FROM HOMOGENEOUS DIHALIDES OF MERCURY (II) IN AQUEOUS SOLUTION

The equilibrium of the process $HgCl_2 + HgBr_2 = 2HgClBr$ in an aqueous solution at an ionic strength of 10^{-3} (HClO₄) and $t = 20 \pm 1^{\circ}$ C was studied spectrophotometrically. The results of the measurements were analyzed by methods of mathematical statistics, no statistically significant differences between the results were found. The value of the equilibrium constant $\log K = 0,687 \pm 0,061$ is obtained; the result coincides with other reliable literature data within the limits of measurement accuracy. The optical characteristics of the chloride-bromide system of mercury (II) is noted to less favorable for measuring the equilibrium constant compared to other mercury (II)

halidepseudo-halogenide systems.

Keywords: diacidocomplexes of mercury (II), equilibrium constants of the coproportion, experiment planning, spectrophotometry, mathematical statistics methods.

Процессы образования смешанных диацидокомплексов ртути (II) из соответствующих однородных:

$$HgX_2 + HgY_2 = 2HgXY \tag{1}$$

в различных растворителях представляют интерес для многих исследователей [17]. На протяжении последних пятидесяти лет получено достаточно большое количество данных о константах равновесий (1). Однако сопоставление результатов разных авторов для одной и той же системы нередко обнаруживает существенно превышающие ошибок ИХ расхождения, уровень воспроизводимости. Критический анализ [14] применяемых методик исследования разными авторами показал, что в них возможно содержание источников систематических погрешностей из-за необоснованности ряда предположений, которые даже при небольших погрешностях в первичных экспериментальных данных могут приводить к значительным искажениям конечных результатов.

Информацию о характеристиках процесса (1) можно получить в рамках надежно себя зарекомендовавшего метода соответственных растворов [1] в виде линейной комбинации констант равновесий двухступенчатого замещения лигандов:

$$HgX_2 + 2Y^- = X^- + HgXY + Y^- = 2X^- + HgY_2$$
 (2)

Впоследствии в рамках этого метода нами была изучена хлориднороданидная система ртути (II) в водном растворе [2]. Если в водных растворах изучение равновесий (2) не связано с проявлением каких-либо сложностей, то при переходе к неводным растворителям они появляются в виде ограниченной растворимости и неполной ионной диссоциации солей, образования ионных пар, а также ион-дипольных взаимодействий. По этой причине более предпочтительны процессы лигандного копропорционирования (1) в системах нейтральных, высокоустойчивых и хорошо растворимых в

органических растворителях галогенидах и псевдогалогенидах ртути (II) (X,Y = Cl, Br, I, CN, SCN).

Для изучения равновесий (1) был разработан спектрофотометрический метод [14], основу которого составляет планирование эксперимента в виде поиска оптимальных условий измерения, обеспечивающих максимальную точность определения величины константы равновесия процесса (1) при заданном исходном уровне ошибок в первичных экспериментальных данных. Существенным отличием этого метода от аналогичных, применявшихся другими исследователями, является то, что в нем изначально отсутствуют какие-либо необоснованные постулаты и предположения. В дальнейшем для некоторых обозначенных выше систем диацидокомплексов ртути (II) были получены данные в ряде растворителей: водном растворе [3–7], бензоле [3, 6], этаноле [6, 8], диоксане [15] и газовой фазе [16]. Практическое использование применяемой нами методики исследования [14] сопряжено с достаточно большим количеством вспомогательных расчетов, необходимых для поиска оптимального плана эксперимента. Впоследствии нами были найдены способы [9], позволяющие существенно облегчить и ускорить процедуру планирования эксперимента без потери точности определения констант равновесий (1). Поскольку еще не для всех галогенидно-псевдогалогенидных диацидосистем ртути (II) получены данные, было принято решение продолжить исследования. В данной работе приводятся результаты изучения хлориднобромидной системы в водном растворе. Вначале коротко изложим основы процедуры планирования эксперимента, подробно описанные в работе [9].

Первоначально в широком интервале волновых чисел измеряются спектры растворов: а) только HgX_2 ; б) только HgY_2 ; в) HgX_2 и HgY_2 в соотношении 1:1; г) HgX_2 и HgY_2 при соотношении концентраций $R \approx 10$. Затем строятся графические зависимости m_1 и a от волнового числа v:

$$m_1 = \frac{2 \cdot \overline{\varepsilon}_1 - (\varepsilon_{20} + \varepsilon_{02})}{\varepsilon_{20} + \varepsilon_{02}}; \quad a = \varepsilon_{20} / \varepsilon_{02}, \tag{3}$$

где $\varepsilon_{20},\ \varepsilon_{02},\ \overline{\varepsilon}_1$ — молярные коэффициенты экстинкций $HgX_2,\ HgY_2$ и раствора при R=1.

Выбираются оптимальные оптические характеристики для исследований на основе поиска максимальных значений $|m_1|$ при условии, что величина a также по возможности была максимальной. Затем с помощью вспомогательной функции у решается задача поиска оптимальных концентрационных условий. Особенность такой функции заключается в следующем. С одной стороны, в явном виде её можно представить как функцию двух переменных: величины K – константы равновесия (1) и R – соотношения концентраций исходных реагентов. Поэтому её числовые значения можно предварительно рассчитать и представить их в виде набора графических зависимостей $\gamma = \gamma(R)$ для ряда фиксированных K. С другой стороны, функция γ достаточно легко определяется основе спектрофотометрических измерений в виде $\gamma = \gamma(\overline{\varepsilon}_1, \overline{\varepsilon}_R, \varepsilon_{20}, \varepsilon_{02}, R)$. Таким образом, используя функцию γ, онжом достаточно легко и быстро, избегая многочисленных промежуточных расчетов, осуществить переход OTнепосредственно полученных экспериментальных данных к конечному результату – величине К. При этом основная задача состоит в том, чтобы минимизировать трансформацию уровня погрешностей первичных экспериментальных данных на конечный результат. В работе [9] показано, что поиск оптимальных концентрационных условий можно осуществить с помощью функции:

$$f(R)|_{v} = (1.5 + X/|m_1|) \cdot z,$$
 (4)

где значения X и z табулированы для разных R, K. Для построения плана эксперимента необходима предварительная оценка величины K, её можно осуществить, вычисляя значение $\gamma_{R=10}$, а затем и K, по результатам оптических измерений при выбранных волновых числах. Область значений R, при которых функция f(R) достигает минимума, является наилучшей для дальнейших измерений.

Восемь из десяти систем галогенидных и псевдогалогенидных диацидокомплексов ртути (II) в водном растворе были изучены нами ранее [3–

6]. большинстве исключением цианидноиодидной ИЗ них, 3a цианиднороданидной, оптические характеристики оказались благоприятными для исследования в рамках используемой нами методики. Иодиднороданидная крайне низкими значениями $|m_1|$ характеризуется система $|\lg \epsilon_{H_0/2}/\epsilon_{H_0(CN)2}| < 0.7$, что исключает возможность ее исследования. Осталась неизученной хлориднобромидная система, в данной работе приводятся результаты измерений в этой системе.

Экспериментальная часть

В работе использовались дистиллированная вода; хлорная кислота марки «х.ч.»; $HgCl_2$ и $HgBr_2$, синтезированные согласно методике [12]. Добавление в растворы хлорной кислоты с концентрацией 10^{-3} моль/л осуществлялось, чтобы предотвратить гидролиз дигалогенидов ртути (II). Сначала из реактивов в калиброванной посуде готовили стандартные (исходные) растворы, а затем рабочие растворы. Максимальная концентрационная ошибка в приготовлении исследуемых растворов не превышала 0,3 %. Регистрацию оптической плотности равновесных растворов осуществляли на спектрофотометре «Specord» при $t = 20 \pm 1$ °C. Во всех исследуемых растворах равновесие достигалось за время, не превышающее 1 мин.

Данные рисунка 1 использовали для выбора оптимальных волновых чисел.

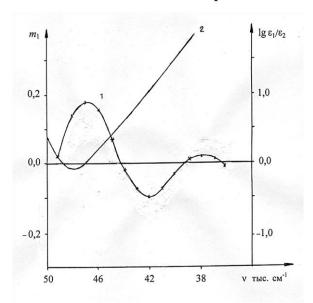


Рисунок 1 — Зависимость m_1 и $\lg \varepsilon_{\text{HgBr}_2}/\varepsilon_{\text{HgCl}_2}$ от волнового числа

$$1 - m_1 = [D_{R=1} - (D_{HgCl_2} + D_{HgBr_2})]/(D_{HgCl_2} + D_{HgBr_2}) = f(v);$$
$$2 - \lg \varepsilon_{HgBr_2}/\varepsilon_{HgCl_2} = f(v).$$

Модуль величины m_1 имеет максимальные значения при v = 47~000 и $42~000~{\rm cm}^{-1}$. Они небольшие – при $47~000~{\rm cm}^{-1}$ всего около 0,16, а $\epsilon_{{\rm HgCl}_2}$ и $\epsilon_{{\rm HgBr}_2}$ здесь приблизительно равны. При $v = 42~000~{\rm cm}^{-1}$ максимум $|m_1|$ еще меньше $\approx 0,10$, но более выгодно соотношение $\epsilon_{{\rm HgBr}_2}/\epsilon_{{\rm HgCl}_2}$. Для дальнейших измерений мы выбрали эти два значения волновых чисел.

При выбранных волновых числах по результатам оптических измерений при R=10 вычисляли значение функции $\gamma_{R=10}$, оно оказалось равным 0,542. Затем, используя графические зависимости γ от $\lg K$ при R=10 [9], определили предварительное значение константы равновесия (1) $\lg K=0.6$ (Hg–Cl–Br). На основании табличных данных работы [9] рассчитали как составные части z, x, так и сами значения функции f(R) при двух волновых числах, эти данные приведены в Таблице 1.

Таблица 1 — Расчетные значения функций z(R), X(R), f(R) при разных R для двух волновых чисел

Функция	Параметр <i>R</i>						
	5	10	15	20	30	40	
$\gamma = 0.542; \lg K = 0.6; \hat{K} = 4.0$							
z(R)	9,0	6,0	5,2	4,9	4,6	4,4	
$v = 47\ 000\ \text{cm}^{-1};\ m_1 = 0.16;\ \lg a = 0.02$							
X(R)	2,18	3,35	4,53	5,79	8,24	10,78	
$(1,5 + X/ m_1)$	15,12	22,44	29,81	37,68	53,01	68,88	
f(R)	136	135	155	185	244	303	
$v = 42\ 000\ \text{cm}^{-1}; m_1 = -0.10; \lg a = 1.05$							
X(R)	1,4	1,7	1,9	2,1	2,5	3,0	
$(1,5 + X/ m_1)$	15,5	18,5	20,5	22,5	27,5	31,5	
f(R)	139	111	107	110	126	139	

Можно видеть, что минимум функции f(R) достигается при R=5 и 10 для $v=47\,000\,\,\mathrm{cm^{-1}}$; $R=10\,\,\mathrm{u}\,15\,\,\mathrm{для}\,\,v=42\,000\,\,\mathrm{cm^{-1}}$. Для дальнейших измерений были выбраны именно эти значения. Следует также отметить, что абсолютные значения функции f(R) в области минимума оказались выше в 2-3 раза, чем для ранее исследованных других систем диацидокомплексов ртути (II), для которых оптические характеристики оказались более благоприятными, чем в хлориднобромидной системе. В Таблице 2 содержатся экспериментальные

данные для одной отдельной серии измерений.

Таблица 2 – Результаты измерений в серии 3

№ p-pa	Состав раствора (ммоль/л)	Оптическая плотность в кювете $0,1$ см при $v = 47~000$ см ⁻¹	Количество независимых измерений			
1	$C_{\text{HgCl}_2} = 1,511 \pm 0,002$	$0,4650 \pm 0,0010$	3			
2	$C_{\text{HgBr}_2} = 1,512 \pm 0,002$	$0,4933 \pm 0,0017$	3			
3	C_{HgCl_2} = 1,511 ± 0,002 C_{HgBr_2} = 1,512 ± 0,002	$1,1100 \pm 0,0029$	3			
4	C_{HgCl_2} = 1,511 ± 0,002 C_{HgBr_2} = 0,1501 ± 0,0002	$0,53402 \pm 0,0007$	3			
$\bar{v} = 0.575 \pm 0.026$ В качестве опибок — спелнеквалратичные отклонения одного измерения						

 $[\]overline{\gamma} = 0.575 \pm 0.026$. В качестве ошибок – среднеквадратичные отклонения одного измерения.

Всего было сделано 12 серий, в которых проводили от трех до шести независимых измерений для каждого раствора серии, для разных R, двух значений C_{HgCl_2} и двух волновых чисел. Полная информация о полученных результатах содержится в Таблице 3.

Таблица 3 – Количественная характеристика результатов

№ серии	v, тыс. cм ⁻¹	$C_{ m HgCl_2},$ ммоль/л	R	$\overline{\gamma}$	$S_{\overline{\gamma}} \cdot 10^{3}$	\overline{K}	$S_{\overline{\mathrm{K}}}^*$	ΔK	$\Delta K^2 \cdot 10^4$
1	47	1,5	5	0,596	23	3,77	1,37	+1,09	11881
2	_''_	_"'_	5	0,529	29	6,04	2,40	-1,18	13924
3	_''_	_"'_	10	0,575	26	5,22	1,30	-0,36	1296
4	_''_	_"_	10	0,584	56	5,73	3,50	-0,87	7569
5	-"-	3,0	5	0,615	21	4,98	2,10	-0,12	144
6	-"-	_"_	10	0,602	31	6,90	2,13	-2,04	41616
7	42	1,5	10	0,541	29	3,63	1,18	+1,23	15129
8	-"-	_"_	10	0,565	23	4,70	1,16	+0,16	256
9	-"-	_"_	15	0,549	36	4,66	1,34	+0,20	400
10	-"-	_"_	15	0,513	28	3,87	0,93	+0,99	9801
11	-"-	3,0	10	0,536	16	3,43	0,52	+1,43	20449
12	_''_	_"'_	15	0,565	30	5,43	1,50	-0,57	3249

 $^{^*}S_{\overline{\gamma}}, S_{\overline{K}}$ — средние квадратичные погрешности средних арифметических ($\overline{\gamma}$ и \overline{K}) в отдельных сериях измерений.

На основе методов математической статистики [11] осуществляли анализ полученных результатов. Для этого данные Таблицы 3 группировали по признакам одинаковых C_{HgCl_2} или ν , или R. Для каждой группы производили расчет средних значений и среднеквадратичных ошибок ($S_{\overline{K}}$). Сопоставление значений среднеквадратичных ошибок осуществляли по F-критерию, а средних результатов — по t-критерию [11]. Можно видеть, что между группами с одинаковыми признаками — C_{HgCl_2} , ν , R — не обнаруживается статистически значимых различий.

Таблица 4 — Распределение величин \bar{K} по группам с одинаковыми признаками

1. $C_{\text{HgCl}_2} = 1,5 \text{ MMO}$	ль/л	$C_{ m HgCl_2}$ = 3,0 ммоль/л				
3,77; 6,04; 5,22; 5 3,63; 4,70; 4,66; 3		4,98; 6,90; 3,43; 5,43				
$\overline{\overline{K}}' = 4,70; S_1 = 0$,91	$\overline{\overline{K}}$ " = 5,18; $S_1 = 1,42$				
F=2,4	·					
t = 1,29 $t(P = 0,95, f = 10) = 2,23$						
$2. v = 47\ 000 \text{ cm}$	_l :	$v = 42~000~\text{cm}^{-1}$				
3,77; 6,04; 5,22	· ·	3	3,63; 4,70; 4,66;			
5,73; 4,98; 6,90)	3,87; 3,43; 5,43				
$\overline{\overline{K}}' = 5,44; S_1 = 1$,06	$\overline{\overline{K}}'' = 4,29; S_1 = 0,77$				
F=1,9	$PO F(\overline{P} = 0.95)$	$f, f_1 = 5, f_2 = 5$	= 5,05			
t =	2,15 t(P=0)	,95, f=10)=2	,23			
3. R = 5	R =	: 10	R = 15			
3,77; 6,04; 4,89	5,22; 5,7 3,63; 4,	, , ,	4,66; 3,87; 5,43			
$\overline{\overline{K}}' = 5,44; S_1 = 1,06$	$\overline{\overline{K}}^{"}=4,29$	$S_1 = 0.77$	$\overline{\overline{K}}''' = 4,29; S_1 = 0,77$			
$F = S_2^2 / S_1^2 = 1,42$ $F(\overline{P} = 0,95, f_1 = 5, f_2 = 2) = 19,30$ t = 0,01 $t(P = 0,95, f = 7) = 2,36$						
$F = S_2^2 / S_3^2 = 2,82$ $F(\overline{P} = 0.95, f_1 = 5, f_2 = 2) = 19,30$						
t = 0.41 $t (P = 0.95, f = 7) = 2.36$						
$F = S_1^2 / S_3^2 = 2,14$ $F(\overline{P} = 0.95, f_1 = 2, f_2 = 2) = 19,00$						
t = 0.35 $t (P = 0.95, f = 4) = 2.78$						

Для всех серий независимых измерений результаты оказались приблизительно равноточны, поэтому в качестве наиболее вероятной оценки величины K приняли среднее арифметическое, а дисперсию среднего арифметического вычислили по Стьюденту, P=0.95: $\overline{\overline{K}} \pm S_{\overline{K}} = 4.86 \pm 0.68$. Соответственно логарифм константы равновесия (1) (X=Cl, Y=Br) lgK=0.687

 \pm 0,061. Этот результат находится в хорошем соответствии с надежными литературными данными 0,66 \pm 0,04 [10] и 0,58 \pm 0,06 [13].

Несмотря на не совсем благоприятные оптические характеристики хлориднобромидной системы, за счет увеличения статистических данных — числа серий независимых измерений, удалось получить результат с точностью, сопоставимой для других диацидосистем ртути (II) [3–6], характеризующихся лучшими для исследования оптическими характеристиками.

СПИСОК ЛИТЕРАТУРЫ

- 1. Белеванцев В.И., Пещевицкий Б.И. О методах измерения констант равновесий ступенчатого замещения лигандов в комплексных соединениях в растворе // Журнал неорганической химии. 1972. T. 17. Bып. 11. C. 2867-2870.
- 2. Белеванцев В.И., Шуваев А.В. Ступенчатое замещение Cl на SCN в хлорокомплексе $HgCl_2$ в водном растворе // Известия Сибирского отделения Академии наук CCCP. Серия химических наук. 1976. No 3. C. 52-56.
- 3. Белеванцев В.И., Шуваев А.В., Пещевицкий Б.И. Диспропорционирование HgClI в водном растворе и в бензоле // Известия Сибирского отделения Академии наук СССР. Серия химических наук. 1978. N 2-3.
- 4. Белеванцев В.И., Шуваев А.В., Пещевицкий Б.И. Образование незаряженных цианогалогенидных комплексов ртути (II) в водном растворе // Известия Сибирского отделения Академии наук СССР. Серия химических наук. 1978. № 4-2. С. 12-18.
- 5. Белеванцев В.И., Шуваев А.В. Роданогалогенидные комплексы ртути (II) в водном растворе // Журнал неорганической химии. 1978. T. 23. N = 4. C. 924-928.
- 6. Белеванцев В.И., Пещевицкий Б.И., Шуваев А.В. Образование HgBrI из дигалогенидов в воде, бензоле и этаноле // Журнал неорганической химии. 1978. T. 23. № 2. C. 324-330.
- 7. Белеванцев В.И., Шуваев А.В. Растворимость HgI_2 (тв) в водном растворе $HgCl_2$ // Журнал неорганической химии. 1981. T. 26. No. 3. C. 787-790.
- 8. Белеванцев В.И., Пещевицкий Б.И., Шуваев А.В. Образование некоторых смешанных незаряженных галогенидных и псевдогалогенидных комплексов ртути (II) в этаноле // Известия Сибирского отделения Академии наук СССР. Серия химических наук. 1979. N 7-3. С. 80-86.
- 9. Белеванцев В.И., Шуваев А.В. Метод исследования равновесий лигандного копропорционирования // Известия Сибирского отделения Академии наук СССР. Серия химических наук. $1983. N_2 2. C. 35-41.$

- 10. Белеванцев В.И., Пещевицкий Б.И., Литвинова В.Ф. Хлориднобромидные комплексы ртути (II) в водном растворе // Известия Сибирского отделения Академии наук СССР. Серия химических наук. -1971. -№ 1. C. 60 66.
- 11. Доерфель К. Статистика в аналитической химии. М.: Мир, 1969. 247 с.
- 12. Карякин Ю.В., Ангелов И.И. Чистые химические реактивы. М.: Гостехиздат, 1955. С. 464.
- 13. Матюшкина Л.Д. Равновесие ступенчатого замещения лигандов в системах хлоро-, бромокомплексов золота (I), ртути (II) в водном растворе: дипл. раб. / Л.Д. Матюшкина; науч. рук. В.И. Белеванцев.— Новосибирск: Новосиб. гос. ун-т, 1973. 62 с.
- 14. Шуваев А.В. Смешанные диацидокомплексы ртути (II) в различных средах: дис. ... канд. хим. наук: 02.00.01 / Шуваев А.В. Новосибирск, 1985. 282 с.
- 15. Шуваев А.В. Образование смешанных галогенидов и псевдогалогенидов ртути (II) из однородных диацидокомплексов в диоксане // Журнал неорганической химии. 1979. Т. 24. N = 8. С. 2091-2096.
- 17. The IUPAC Stability Constants Database, SC-Database, Academic Software, Release 5 (current release, 2012).