Крамаренко Аркадий Викторович,

канд. техн. наук, доцент кафедры «ПГСиГХ»;

Красильникова Оксана Андреевна,

студентка,

ФГБОУ ВО «Тольяттинский государственный университет»,

г. Тольятти, Самарская область, Россия

БЕТОНЫ НА ОСНОВЕ ОТСЕВОВ ДРОБЛЕНИЯ КАРБОНАТНЫХ ПОРОД С ПРИМЕНЕНИЕМ СТАЛЬНОЙ ФИБРЫ

В данной статье проводится анализ бетонов на отсевах дробления карбонатных пород (ОДКП) с добавлением стальной фибры. Проведен сравнительный анализ образцов бетона с различным мелким заполнителем и их основных физико-технический свойств. Выбран наиболее целесообразный состав для последующего использования в строительстве.

Ключевые слова: отсевы дробления, комплексное использование, стальная фибра.

Arkady V. Kramarenko,

Candidate of Technical Sciences, Associate Professor;

Oksana A. Krasilnikova,

Student,

MPEI HE of Togliatti State University,

Togliatti, Samara region, Russia

CONCRETE ON THE BASIS OF ELIMINATIONS OF SUBDIVISION OF CARBONACEOUS BREEDS WITH APPLICATION OF THE STEEL FIBER

In this article the analysis of concrete on the eliminations of subdivision of carbonaceous breeds (ESCB) with addition of a steel fiber is carried out. The comparative analysis of exemplars of concrete with various shallow filler and their main physics and technology properties is carried out. The most expedient structure for the subsequent use in construction is chosen.

Keywords: eliminations of subdivision, integrated utilization, steel fiber.

В настоящее время керамзитобетонные блоки являются одними из наиболее распространённых штучных каменных материалов. Их используют как крупные застройщики, возводя многоэтажные дома или массовые коттеджные застройки, так и частные лица, которые строят собственными www.articulus-info.ru

силами загородные дома, банные и гаражные комплексы, хозяйственные и иные постройки [1].

Для повышения прочностных и др. характеристик в керамзитобетонные блоки в процессе их изготовления добавляется стальная фибра. Образцы из бетона с применением стальной фибры рассматривались в теоретических исследованиях 60-х годов [2].

Динамические нагрузки, возникающие в результате усталости, ударов, сейсмики, повышенной влажности или изменения температуры, приводят к растрескиванию бетонных конструкций, а стальная фибра позволит предотвратить или минимизировать этот процесс.

Нержавеющие сплавы и стали, которые используются для создания стальной фибры, применяются в возведении конструкций, предназначенных для эксплуатации в водной среде, также огнестойких конструкций и производства коррозионностойких волокон.

Виды волокон фибры, используемой для строительства в настоящее время и их характеристики представлены в Таблице 1.

Таблица 1 – Виды фибры и ее прочностные характеристики

				Прочность	Удлинение
$\mathcal{N}_{\underline{0}}$	Волокно	Плотность,	Модуль	при	при
Π/Π		г/см	упругости, МПа	растяжении,	растяжении,
				МПа	%
1	Полипропилен	0,9	35008000	400700	1025
2	Полиамид	0,9	19002000	720750	2425
3	Полиэтиленовое	0,95	14004200	600720	1012
4	Акриловое	1,1	21002150	210420	2545
5	Нейлоновое	1,1	42004500	770840	1620
6	Вискозное сверхпрочное	1,2	56005800	660700	1416
7	Полиэфирное	1,4	84008600	730780	1113
8	Хлопковое	1,5	49005100	420700	310
9	Карбоновое	1,63	280000380000	12004000	2,02,2

«Наука и образование: новое время» № 2, 2018

10	Углеродное	2,00	200000250000	20003500	1,01,6
11	Стеклянное	2,60	70008000	18003850	1,53,5
12	Асбестовое	2,60	6800070000	9103100	0,60,7
13	Базальтовое	2,62,7	700011000	16003200	1,43,6
14	Стальное	7,80	190000210000	6003150	34

Существует 3 вида фибры, которая используется чаще всего: анкерная фибра, волновая фибра, микрофибра.

Форма и параметры фибры используемой в производстве бетонов приведены в Таблице 2.

Таблица 2 – Форма и параметры фибры

Параметры	Показател	Показатели их отклонений		
	Анкерная фибра			
h t	L L	D		
Длина L, мм	30	50; 60		
Номинальный диаметр D, мм	0,30-0,70	0,80-1,10		
	Микрофибра			
	L _	D		
Длина L, мм		12; 13		
Номинальный диаметр D, мм	0,	0,20-0,35		
	Волновая фибра			
w		B		
Длина L, мм		15-22		
Номинальный диаметр D, мм	0,	0,20-0,70		

«Наука и образование: новое время» № 2, 2018

Так как микрофибра в достаточной мере не соответствует прочностным характеристикам при рассмотрении высотного строительства, то в данном исследовании авторы статьи применяли стальную волновую фибру.

При сравнении мелкозернистого бетона на отсевах дробления карбонатных пород с применением стальной фибры и тяжёлого бетона, экономический эффект составляет 20%, что происходит за счет снижения армирования бетонных изделий и замены природного мелкого заполнителя.

Как видно на рисунке 1, сопротивление растяжению и сжатию напрямую зависит от объёма стальной фибры, которая содержится в бетоне на отсевах дробления карбонатных пород.

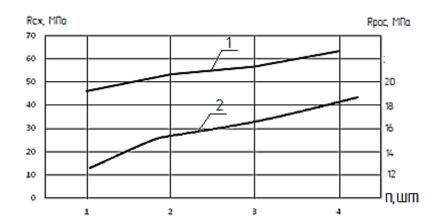


Рисунок 1 – Испытание бетонных образцов с использованием ОДКП и стальной фибры на сжатие и изгиб, МПа.

1 – испытание образцов на растяжение, 2 – испытание образцов на сжатие.

Таким образом, из анализа графических зависимостей следует, что в качестве армирования можно применять стальную фибру, а заполнитель исключительно на отсевах дробления карбонатных пород не подходит. Его следует обогащать, добавляя в меньшей доле природный песок: прочностные характеристики улучшаются, и это даёт возможность применять полученный бетон для сборных и штучных элементов.

СПИСОК ЛИТЕРАТУРЫ

1. Крамаренко А.В., Путилова М.Н. Керамзитобетон с добавкой фосфорного шлака автоклавного закаливания // Символ науки. -2017. -№ 5 - C. 203-205.

«Наука и образование: новое время» № 2, 2018

- 2. Горячев Д.Е., Крамаренко А.В. Керамзитобетон с добавкой гипсоцементно-пуциолановых вяжущих // Символ науки. -2017. -T.2. -№ 3 C. 49-51.
- 3. Горячев Д.Е., Крамаренко А.В. Модификация гипсоцементно-пуццолановых вяжущих магнезиальным цементом // Научный альманах. -2017. -№ 3-3 (29). C. 61-63.
- 4. Горячев Д.Е., Крамаренко А.В. Керамзитобетон с добавкой гипсоцементно-пуццоланового вяжущего на основе магнезиального цемента // Инновационная наука. 2017. № 5 С. 61-63.
- 5. Клюев С.В. Основы конструктивной организации природных и искусственных материалов / Современные технологии в промышленности строительных материалов и стройиндустрии: сб. студ. докл. Международного конгресса: В 2 ч. Ч. 1. Белгород: Изд-во БГТУ им. В.Г. Шухова, 2003. С. 161-163.
- 6. http://www.navigator-beton.ru/prajjs_list/fibrobeton.html