УДК 662.641

Афанасьева Ольга Валерьевна,

канд. техн. наук, начальник

Управления научных исследований, инноваций и разработок,

 $\Phi\Gamma FOYBO \ll K\Gamma \ni Y \gg$.

г. Казань, Республика Татарстан, Россия;

Скороход Алена Игоревна,

студентка магистратуры,

ФГБОУ ВО «КНИТУ»,

г. Казань, Республика Татарстан, Россия

РЕШЕНИЕ ЭКОЛОГИЧЕСКИХ ПРОБЛЕМ ИСПОЛЬЗОВАНИЯ МЕСТНОГО ТОПЛИВА В МАЛОЙ ЭНЕРГЕТИКЕ

В статье проанализировано использование торфа в качестве топлива на объектах малой распределенной энергетики. Рассмотрены процессы газификации и очистки генераторного газа на мини-ТЭС, работающей на торфе.

Ключевые слова: торф, малая энергетика, газификация, система очистки.

Olga V. Afanaseva,

Ph.D., the Head of scientific research,

innovation and development department,

FSBEI HE «KSPEU»,

Kazan, Republic of Tatarstan, Russia;

Alena I. Skorohod,

graduate student,

FSBEI HE «KNITU»,

Kazan, Republic of Tatarstan, Russia

THE SOLUTION OF ENVIRONMENTAL PROBLEMS OF USING LOCAL FUEL IN SMALL POWER ENGINEERING

In the article the using of peat as a fuel at small distributed power engineering objects was analyzed. The processes of gasification and purification of generator gas at mini-thermal power plant working on peat was considered.

Keywords: peat, small power engineering, gasification, purification system.

www.articulus-info.ru

Значимость использования местных источников энергии в распределённой энергетике растёт с каждым днем. Если в последние годы в малой энергетике уклон делался на использование традиционных источников энергии — природного газа, нефти, — то стремительный рост цен на данные энергоресурсы заставляет потребителей всё чаще обращать внимание на использование местного топлива.

В настоящее время готовятся поправки в законодательство РФ, которые позволят приравнять торфяную генерацию к возобновляемым источникам энергии. Вместе с тем, наша страна обладает значительными запасами торфа, на её долю приходится половина от всех мировых запасов, и каждый год запасы торфа в нашей стране пополняются на 250 млн. тонн. Учитывая эти данные, можно сделать вывод, что наша страна обладает большими перспективами использования торфа в качестве источника энергии на объектах малой распределенной энергетики. Однако ввиду отсутствия нормативнометодической базы по объектам малой энергетики, работающим на твёрдом топливе, разработки в области малой энергетики носят единичный характер [1-3]. Более того, в литературных источниках крайне редко встречаются исследования, касающиеся решения экологических вопросов. Вместе с тем, для объектов малой энергетики соответствие экологических параметров нормативам является одним из важнейших факторов, так как данные объекты располагаются в непосредственной близости от потребителей и требования по экологической безопасности к ним предъявляются еще более жёсткие.

Снижение негативного воздействия на окружающую среду при использовании торфа на объектах малой генерации возможно путём его газификации с получением генераторного газа, который после очистки от вредных выбросов поступает в энергетические установки для выработки энергии.

Газификация торфа представляет собой сложный процесс и требует учёта состава исходного сырья. В процессе газификации главной стадией является

подготовка сырья, а именно сушка торфа, так как от правильности её проведения зависит состав полученного генераторного газа и распад торфа на куски при газификации. Непрочность торфа и распад его на куски вызывает унос пыли с газами и засорение газогенератора, что существенно ухудшает протекание процесса газификации.

Очистка генераторного газа на мини-ТЭС производится следующим образом. После газогенератора генераторный газ направляется в охладитель, а затем охлажденный газ поступает в электрофильтр. В электрофильтре происходит отделение большей части смолы, и затем очищенный от смолы газ направляется в трехступенчатый скруббер. Ввиду отсутствия серийновыпускаемого оборудования малой мощности очистки генераторного газа для объектов малой энергетики, необходимо проведение расчётов рассматриваемых процессов и разработка конструкции аппаратов, что является следующим этапом выполнения данной работы.

Также в рамках работы будет рассмотрена возможность утилизации получаемых побочных продуктов на мини-ТЭС. Так, зола, образующаяся при термохимической переработке торфа, практически не требует дополнительной обработки и может быть использована, как в строительстве в производстве бетона, так и в сельском хозяйстве при получении удобрений. Также часть торфа на мини-ТЭС, помимо получения энергии, может идти на получение активированного угля, кокса, полукокса, гранул, брикетов, которые в настоящее время получают всё большее распространение в связи с использованием в современных энергетических установках и для нужд потребителей.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 17-08-00295 «А».

СПИСОК ЛИТЕРАТУРЫ

1. Штин С.М. Применение торфа как топлива для малой энергетики // Горная промышленность. — 2011.-N27. — С. 82-96.

«Наука и образование: новое время» № 2, 2018

- 2. Павлов Д.А., Семикова Е.Н. Модернизация котельного агрегата ДКВР-6,5-13 при переводе на местные виды топлива // Современные наукоемкие технологии. 2013. № 8-2. С. 309-311; URL: http://www.top-technologies.ru/ru/article/view?id=32310.
- 3. Кузьмина Ю.С. Перспективы применения торфа в качестве топлива // Молодежный научно-технический вестник. -2013. -№ 3.