УДК 541.49+544.342+546.492'131'151

Шуваев Александр Васильевич,

канд. хим. наук, доцент,

ФГБОУ ВО «Сибирский государственный университет путей сообщения», г. Новосибирск, Россия

ИЗУЧЕНИЕ РАВНОВЕСИЯ КОПРОПОРЦИОНИРОВАНИЯ В ХЛОРИДНОИОДИДНОЙ СИСТЕМЕ РТУТИ (II) В ВОДНОМ РАСТВОРЕ МЕТОДОМ РАСТВОРИМОСТИ

Изучена растворимость иодида ртути (II) в водных растворах хлорида ртути (II) при 21° С и I=0,01 (HClO₄). Получены значения растворимости иодида ртути (II) $\lg K_{pacm(HgI_2)}=-4,02$ и константы равновесия процесса $HgI_2+HgCl_2=2HgICl$, $\lg K=0,81\pm0,06$. Отмечено, что разработанная методика исследования равновесий копропорционирования на примере хлоридноиодидной системы ртути (II) на основе метода растворимости может быть использована для изучения других систем.

Ключевые слова: диацидокомплексы ртути (II), хлоридноиодидная система ртути (II), константы равновесий копропорционирования, планирование эксперимента, метод растворимости.

Alexander V. Shuvaev,

PhD in Chemistry, docent, Siberian State University of Railway Engineering, Novosibirsk, Russia

STUDY OF THE COPROPORTION EQUILIBRIUM IN THE CHLORIDE-IODIDE SYSTEM OF MERCURY (II) IN AQUEOUS SOLUTION BY THE SOLUBILITY METHOD

The solubility of mercury (II) iodide in aqueous solutions of mercury (II) chloride at 21° C and I = 0.01 (HClO₄) was studied. The values of the solubility of mercury (II) iodide $\lg K_{solv(HgI_2)} = -4.02$ and the equilibrium constant of the process $HgI_2 + HgCl_2 = 2HgICl$, $\lg K = 0.81 \pm 0.06$ were obtained. The developed method for studying equilibria of coproportion, as the example of the chloride-iodide system of mercury (II), based on the solubility method, it is noted can be used to study other systems.

Keywords: diacidocomplexes of mercury (II), the chloride-iodide system of mercury (II), equilibrium constants of the coproportion, experiment planning, solubility method.

Многие диацидокомплексы ртути (II) характеризуются высокой устойчивостью и хорошей растворимостью в воде и неводных растворителях, кроме того они являются незаряженными частицами. Сочетание таких уникальных свойств представляет возможность исследования в различных средах равновесий копропорционирования:

$$HgX_2 + HgY_2 = 2HgXY \tag{1}$$

литературе имеется целый ряд работ, посвященный изучению процессов (1) [25]. Сопоставление результатов разных авторов для однотипной системы в одинаковых условиях нередко обнаруживает их расхождения, иногда значительные, выходящие за пределы приводимых ошибок воспроизводимости. Анализ применявшихся методик исследования [19] обнаружил в них наличие высокой допущений, которые даже при точности первичных экспериментальных данных могут служить источником существенных систематических и случайных ошибок конечных результатов. В связи с этим были предприняты попытки разработки надежных методов исследования равновесий процессов (1) [9, 11, 12, 19]. Впоследствии для ряда галогенидных и псевдогалогенидных диацидосистем ртути (II) были получены результаты в разных средах: водном растворе [1 - 5, 10, 21], бензоле [2, 5], этаноле [5, 6], диоксане [17], газе [20]. Интерпретация полученных высокоточных результатов [7, 8, 18] позволила вскрыть определенные закономерности и получить ценную информацию о процессах комплексообразования.

Поскольку в основе применяемых нами методик исследования процессов (1) [19] использовался один и тот же спектрофотометрический метод, представляло интерес для тех же целей изучить возможности другого независимого метода – метода растворимости. В данной работе приводятся результаты исследования равновесия копропорционирования в хлоридноиодидной системе ртути (II) в водном растворе в рамках метода растворимости.

Методика исследования сводилась к следующему. Предположим, что один из однородных комплексов, например HgX_2 , имеет меньшую растворимость по сравнению с другим, тогда гетерогенное равновесие

$$HgX_{2(TB)} \longrightarrow HgX_{2(p-p)}$$
 (2)

будет характеризоваться константой

$$K_{pacm(HgX_2)} = [HgX_2] \tag{3}$$

При добавлении к этой гетерогенной системе раствора, содержащего комплекс HgY_2 , между двумя комплексами в водной фазе будет происходить процесс копропорционирования (1). В равновесных условиях (1) и (2) можно представить выражение для константы равновесия копропорционирования (1) в виде:

$$K = \frac{\left[\text{HgXY}\right]^2}{K_{pacm}\left(\text{HgX}_2\right)\left[\text{HgY}_2\right]} \tag{4}$$

Если состав твердой фазы соответствует комплексу HgX_2 и в ней отсутствуют другие комплексы HgXY, HgY_2 , а также твердые растворы, то можно записать два уравнения материального баланса:

$$C_{\text{HgY}_2} = [\text{HgX}_2] + 1/2[\text{HgXY}],$$
 (5)

$$C_{\text{Hg}} = [\text{HgX}_2] + [\text{HgY}_2] + [\text{HgXY}].$$
 (6)

Из уравнений (4) – (6) получаем:

$$K = \frac{4\left(C_{\text{Hg}} - C_{\text{HgY}_{2}} - K_{pacm} \left(\text{HgX}_{2}\right)\right)^{2}}{K_{pacm} \left(\text{HgX}_{2}\right) \cdot \left(2C_{\text{HgY}_{2}} - C_{\text{Hg}} + K_{pacm} \left(\text{HgX}_{2}\right)\right)}$$
(7)

Таким образом, для расчета значения K необходимы измерения общего содержания ртути в растворе ($C_{\rm Hg}$) при исходной концентрации $C_{{\rm HgY_2}}$, равной нулю (в этих условиях определяется $K_{pacm({\rm HgX_2})}$) и втором значении, при котором погрешность определения конечного результата будет минимальна.

Оптимальными условиями для измерения являются такие, когда молярная доля смешанного комплекса (HgXY) в растворе максимальна. Этому соответствует равенство между равновесными концентрациями однородных комплексов, тогда с учетом (3) можно записать: [HgX2] = [HgY2] = $K_{pacm(HgX2)}$. Соответственно получаем, что [HgXY] = $K_{pacm(HgX2)} \cdot \sqrt{K}$ и $C_{HgY2} = K_{pacm(HgX2)} \cdot (1 + \sqrt{K}/2)$. Для хлоридноиодидной системы, используя надежные литературные данные $K_{pacm(HgI2)} = 1,06 \cdot 10^{-4}$ [25], K = 7,4 [13], находим, что для дальнейших исследований оптимальное значение концентрации C_{HgCI2} составляет порядка

 $\sim 2.4 \cdot 10^{-4}$ моль/л.

Экспериментальная часть

В работе использовались дистиллированная вода; хлорная кислота марки «х.ч.»; HgCl₂ и HgI₂, синтезированные согласно методике [16]. В плоскодонную коническую колбу, объемом 250 мл, насыпалась навеска твердого иодида ртути (II) массой около 1 г. Затем добавляли раствор, содержащий 10⁻⁴ моль/л хлорида натрия (для подавления диссоциации комплексов $HgCl_2$ и HgClI) и 10^{-2} моль/л хлорной кислоты (для предотвращения гидролиза солей ртути). В двух других колбах процедуру повторяли, но в раствор дополнительно добавляли хлорид ртути (II) различной концентрации. Приготовление содержимого каждой из трех колб повторяли еще дважды независимо. Колбы герметично закрывали и термостатировали при t = 21 ± 0,3°C при механическом перемешивании до достижения равновесия. Ежедневно производился отбор проб и их анализ на содержание ртути. Было найдено, что достижение равновесия происходит примерно на четвертые сутки. Дополнительно проверка наличия равновесия осуществлялась путем выдержки некоторых растворов при более высокой температуре (30-40°C). Результаты их анализа показывали на повышенное общее содержание ртути по сравнению с равновесным раствором при 21°C. Затем растворы опять приводили к условиям равновесия при 21°C и снова анализировали их. В обоих случаях результаты анализа растворимости ртути оказались одинаковыми в пределах точности измерений.

Процедура определения содержания ртути в растворе производилась спектрофотометрически при $v=31~000~{\rm cm}^{-1}$ путем перевода ртути в форму ${\rm HgI_4}^{2-}$ добавлением избытка KI, используя серию стандартных калибровочных растворов. Равновесная донная фаза отделялась от раствора и проверялась на отсутствие в ней заметных количеств ${\rm HgCl_2}$ путем измерения растворимости в водном растворе (10^{-4} моль/л NaCl, 10^{-2} моль/л HClO₄). В ряде опытов измеряли растворимость ртути в растворе при разных навесках иодида ртути (II) (0,5; 1,0; 2,0 г). Все результаты показали практически полное отсутствие ${\rm HgCl_2}$ и ${\rm HgClI}$ в донной фазе, равновесной с водным раствором ${\rm HgCl_2}$. Сведения о составах растворов и результаты измерений представлены в Таблице 1.

Таблица 1 — Растворимость иодида ртути (II) в водных растворах хлорида ртути (II) при ионной силе 0,01 (HClO₄) и температуре $21 \pm 0,3$ °C

№ p-pa	$C_{ m HgCl_2} \cdot 10^4$, моль/л	Общее содержание $Hg(II)$ в растворе $C_{Hg} \cdot 10^4$, моль/л	Количество независимых измерений
1	-	0.96 ± 0.01	3
2	$2,409 \pm 0,002$	$4,70 \pm 0,02$	3
3	$8,043 \pm 0,006$	$11,79 \pm 0,09$	3
Примечание. В качестве ошибок приведены погрешности одного измерения			

Растворимость иодида ртути (II) в водном растворе при 21°C оказалась равной $\lg K_{pacm(HgI_2)} = -4,02$. В Таблице 2 приведены литературные данные по растворимости иодида ртути (II) в водном растворе.

Таблица 2 — Растворимость HgI_2 в водном растворе при 25°C

Ионная сила (среда)	$-\lg K_{\mathit{pacm}(\mathrm{HgI}_2)}$, лит. данные	
0	3,89; 3,88; 4,01; 3,90 [28, 24, 23, 15]	
Bap.	3,88 [26]	
0,5 (NaClO ₄)	4,13 [22]; 4,05 [14]	

При пересчете значения $\lg K_{pacm(HgI_2)}$ при 21°C на температуру 25°C с использованием $\Delta H_{pacm(HgI_2)} = 28,4$ кДж/моль [27] получаем величину — 3,95, которая неплохо согласуется с литературными данными.

По результатам обработки экспериментальных данных (табл. 1) рассчитали значение константы равновесия процесса (1) для хлоридноиодидной системы и оценили дисперсию для двух серий измерений: $6,79 \pm 0,42$ и $6,14 \pm 0,49$. Соответственно логарифм константы $1gK = 0,81 \pm 0,06$ (ошибка — по Стьюденту, P = 0,95). Этот результат хорошо согласуется с надежными литературными данными $0,90 \pm 0,05$ [13] и $0,87 \pm 0,09$ [2], полученных в рамках спектрофотометрического метода, и является экспериментальным подтверждением корректности разработанной в этой работе методики исследования равновесий копропорционирования методом растворимости.

СПИСОК ЛИТЕРАТУРЫ

- 1. Белеванцев В.И., Шуваев А.В. Ступенчатое замещение Cl на SCN в хлорокомплексе $HgCl_2$ в водном растворе // Известия Сибирского отделения Академии наук CCCP. Серия химических наук. − 1976. N

 ot 3. C. 52-56.
- 2. Белеванцев В.И., Шуваев А.В., Пещевицкий Б.И. Диспропорционирование HgClI в водном растворе и в бензоле // Известия Сибирского отделения Академии наук СССР. Серия химических наук. 1978. Nolon 27-3. C. 47-53.
- 3. Белеванцев В.И., Шуваев А.В., Пещевицкий Б.И. Образование незаряженных цианогалогенидных комплексов ртути (II) в водном растворе // Известия Сибирского отделения Академии наук СССР. Серия химических наук. 1978. N = 4-2. C. 12-18.
- 4. Белеванцев В.И., Шуваев А.В. Роданогалогенидные комплексы ртути (II) в водном растворе // Журнал неорганической химии. 1978. Т. 23. № 4. С. 924-928.
- 5. Белеванцев В.И., Пещевицкий Б.И., Шуваев А.В. Образование HgBrI из дигалогенидов в воде, бензоле и этаноле // Журнал неорганической химии. 1978. Т. 23. № 2. С. 324-330.
- 6. Белеванцев В.И., Пещевицкий Б.И., Шуваев А.В. Образование некоторых смешанных незаряженных галогенидных и псевдогалогенидных комплексов ртути (II) в этаноле // Известия Сибирского отделения Академии наук СССР. Серия химических наук. 1979. № 7-3. С. 80-86.

«Наука и образование: новое время» № 1, 2019

- 7. Белеванцев В.И., Шуваев А.В., Малкова В.И., Пещевицкий Б.И. Электронные спектры поглощения некоторых диацидокомплексов ртути (II) в воде // Координационная химия. 1980. Т. 6. № 7. С. 1000-1008.
- 8. Белеванцев В.И., Пещевицкий Б.И., Шуваев А.В. О некоторых закономерностях при образовании смешанных комплексов в растворе // Известия Сибирского отделения Академии наук СССР. Серия химических наук. 1980. $N_{\rm e}$ 6. C. 3-8.
- 9. Белеванцев В.И., Шуваев А.В. О некоторых дополнительных способах проверки достоверности результатов измерения констант равновесий копропорционирования // Известия Сибирского отделения Академии наук СССР. Серия химических наук. 1981. N 4. C. 16-19.
- 10. Белеванцев В.И., Шуваев А.В. Растворимость HgI_2 (тв) в водном растворе $HgCl_2$ // Журнал неорганической химии. 1981. Т. 26. № 3. С. 787-790.
- 11. Белеванцев В.И., Шуваев А.В. Метод исследования равновесий лигандного копропорционирования // Известия Сибирского отделения Академии наук СССР. Серия химических наук. -1983. -№ 2. -C. 35-41.
- 12. Белеванцев В.И., Шуваев А.В. О методах определения спектров смешанных комплексов, констант равновесий копропорционирования и лиганд-лигандного замещения в системах диацидокомплексов Hg(II) // Известия Сибирского отделения Академии наук СССР. Серия химических наук. 1985. N 4. С. 132-137.
- 13. Белеванцев В.И., Пещевицкий Б.И., Бадмаева Ж.О. Ступенчатое замещение Cl^- на I^- в $HgCl_2$ // Журнал неорганической химии. 1972. т. 17, вып. 11. С. 2897-2902.
- 14. Белеванцев В.И., Пещевицкий Б.И., Бадмаева Ж.О. Лиганд-эффект при замещении $C\Gamma$ (Br^{-}) на Γ в тетрахлоро (бромо) комплексах ртути (II) // Журнал неорганической химии. 1973. т. 18. C. 2050-2054.
- 15. Гринберг А.А., Никольская А.Б. // Журнал прикладной химии. 1951. m. 24. C. 893.
- 16. Карякин Ю.В., Ангелов И.И. Чистые химические реактивы. М., Гостехиздат, 1955. С. 464.
- 17. Шуваев А.В. Образование смешанных галогенидов и псевдогалогенидов ртути (II) из однородных диацидокомплексов в диоксане // Журнал неорганической химии. 1979. Т. 24. № 8. С. 2091-2096.
- 18. Шуваев А.В., Белеванцев В.И., Малкова В.И., Пещевицкий Б.И. Электронные спектры поглощения некоторых галогенидов Hg(II) в газовой фазе // Известия Сибирского отделения Академии наук СССР. Серия химических наук. 1985. N_2 5. C. 38-42.
- 19. Шуваев А.В. Смешанные диацидокомплексы ртути (II) в различных средах: дис. ... канд. хим. наук: 02.00.01 / Шуваев Александр Васильевич. Новосибирск, 1985. 282 с.

«Наука и образование: новое время» № 1, 2019

- 20. Шуваев А.В., Белеванцев В.И., Пещевицкий Б.И., Шипачев В.А. Образование смешанного хлоридо-иодида ртути (II) в газовой фазе // Журнал неорганической химии. 1986. Т. 31. № 1. C.35-41.
- 21. Шуваев А.В. Образование HgClBr из однородных дигалогенидов ртути (II) в водном растворе [Электронный ресурс] // Наука и образование: новое время. 2018. № 1 (24). $C.\ 15-24.\ -\ URL$: https://articulus-info.ru/category/02-00-00-himicheskie-nauki/?tag=1-yanvar-fevral-2018-g
- 22. Biedermann G., Silllen L.G. Svensk. Kem. Tidskr. 1949. v. 61. p. 63; yum. no [25].
- 23. de Bruijn J.A. J. Rec. Ttav. Chim. 1941. v. 60. p. 309; yum. no [25].
- 24. Garrett A.B. J. Amer. Soc. 1939. v. 61. p. 2744; yum. no [25].
- 25. The IUPAC Stability Constants Database, SC-Database, Academic Software, Release 5 (current release, 2012).
- 26. Morse H. Z. phys. Chem. 1902. v. 41. p. 709; yum. no [25].
- 27. van Panthaleon van Eck C.L. Thesis. Leiden. 1959; yum. no [25].
- 28. Sherrill. M.S. Z. phys. Chem. 1903. v. 43. p. 705; 1904. v.47. p. 10; yum. no [25].